Technological Watch

In this section, you can access to the latest technical information related to the RIGA project topic.

The still-promised potential of basalt fiber composites

Although the long-anticipated market surge in basalt fiber-reinforced polymer composites remains largely in the future, basalt fiber manufacturers are making headway over the technical and market hurdles toward large-scale application.

Basalt in sporting goods

Kayak paddles are one among many sporting goods applications that benefit from basalt fiber’s combination of “give” and strength.

Source | Nimbus Paddles

A close-up of the Nimbus kayak paddles shows the basalt fibers.

Source | Nimbus Paddles

Basalt fiber source material

Rapidly cooled lava forms basalt rock, which helps explain basalt fiber’s excellent thermal properties. Basalt fiber producers seek out basalt sources with consistent composition and properties.

Source: Mafic

Price-performance sweet spot

Recognizable because of its unique color, basalt fiber more importantly provides a unique combination of performance characteristics that place it within the price-performance gap between E-glass and carbon fibers.

Source | Kamenny Vek

Filling the gap

Data indicates that basalt fiber offers tensile strength comparable to that of S-Glass at a cost closer to that of E-glass.

Source | Mafic

Basalt textiles

Basalt fiber producers have developed sizing and fiber handling technologies sufficient for the creation of a fully spectrum of fabrics for composites applications.

Source | Mafic

Previous Next $(document).ready(function () { //$('.carousel-item').first().addClass('active'); //$('.carousel-indicators > li').first().addClass('active'); $('').swiperight(function () { $(this).carousel('prev'); }); $('').swipeleft(function () { $(this).carousel('next'); }); $('').carousel({ pause: true, interval: false }); });

If you quarry rock originally formed from the rapid cooling of magnesium- and iron-rich lava, and find a way to produce fibers from this rock, it should come as no surprise that the fiber would exhibit excellent thermal insulation and fire resistance properties, as well as very high service temperatures. These key properties have made basalt fiber a standard material for insulation products in high-temperature applications, such as industrial furnace lining and fireproof rope. Basalt fiber producer Kamenny Vek (Dubna, Russia), for example, is supplying a large amount of its product to the U.S. automotive industry for exhaust system insulation, and also to producers of heat-resistant materials for industrial applications.

In addition to its thermal properties, basalt fiber’s combination of strength, impact resistance and chemical inertness also have made it an attractive candidate for composites applications. So the question remains: When will basalt fiber-reinforced polymer composites (BFRP) enjoy significant market penetration?

Featured Content JEC 2019 at first glance Reaping the benefits: Composites use grows in agricultural equipment Thermoplastic composite pipe on the rise in the deep sea _jwl(function() { document.addEventListener('DOMContentLoaded', function() { // Ensure the "Related Stories" isn't nested in anything that'd cause an odd render var promo = document.querySelector('.blogPost .DisplayBar.promo-horizontal, #articleBody .DisplayBar.promo-horizontal'); if (promo !== null) { var promoParent = promo.parentElement; if (promoParent.id !== 'short' && promoParent.id !== 'articleBody') { promoParent.parentElement.insertBefore(promo, promoParent.nextElementSibling); } } }) });

The inside joke, reports James Streetman, manager at Advanced Filament Technologies (Houston, Texas, U.S.), is that BFRP applications “have been five years away from a major breakthrough for the past 15 years.” Advanced Filament Technologies offers the trademarked Sudaglass basalt fiber, originally made in Sudogda, Russia, and now produced by GBF Basalt Fiber Co. (Zhejiang, China). All kidding aside, cautious optimism may best describe Streetman’s mood — and more generally, the mood of many BFRP stakeholders. For example, Nick Gencarelle, principal at Smarter Building Systems (Newport, R.I., U.S.), describes the BFRP market as “very slow, flat — but in the last two years, things have started to open up a bit. Structural engineers are beginning to more fully understand the need for BFRP.”

One clear sign that BFRP may be poised for growth is the recent investment of $20 million to build the first basalt fiber production facility in the United States. Relative newcomer Mafic (Kells, County Meath, Ireland) is building the facility in Shelby, North Carolina, and expects to “go hot” in the third quarter of 2019, reports Jeffrey Thompson, Mafic marketing manager.

It would seem that the appeal of basalt fiber’s performance characteristics and the potential for considerable BFRP market penetration are strong. As a result, basalt fiber manufacturers continue to pursue this market resolutely and are ironing out the technical and market issues that so far have kept the breakthrough from occurring.

The appeal of basalt

The notion of creating fiber from basalt is not new; the first patent for basalt fiber manufacture was issued in 1923, and application to military hardware was researched extensively in the 1950s and 1960s. Even major producers of glass fiber explored basalt’s potential, though they abandoned this focus in the 1970s to concentrate R&D efforts on better-performing glass fiber, including S-2 glass. While interest in developing basalt fiber-reinforced composites has waxed and waned over these decades, it has persisted and grown in recent years.

A June 2015 MarketsandMarkets Research (Pune, India) report estimated near-term overall growth in the basalt fiber market, including composite and non-composite applications, to be substantial. According to the report, the basalt fiber global market in 2020 will reach $200 million, with a compound annual growth rate (CAGR) of 13.1 percent between 2015 and 2020. “We are in the process of updating our existing study on the basalt fiber market,” says Pankaj Kumar Tiwari, MarketsandMarkets associate manager, “as we have witnessed significant changes in this market in 2018.” As contributors to the market change, he cites growing use of basalt fiber in hybrid composites, an increasing demand from the automotive market and the appeal of basalt’s recyclability combined with its strength (said to be greater than that of E-glass). Tiwari mentions two specific events, as well. In 2018, Owens Corning (Toledo, Ohio, U.S.) acquired Paroc Group (Helsinki, Finland), maker of basalt insulation fibers; also, Mafic and fiber sizing manufacturer story reported one such application by Coyote Designs (Boise, Idaho, U.S.). Some of the company’s customers found carbon fiber polymer composites to be uncomfortably stiff, and the prosthetics suffered from a high rate of cracking failure. Interestingly, another factor that made the switch to basalt attractive was that, unlike manufacturing with basalt fiber, manufacturing with carbon fiber involved masks, protective gear and dust collection systems for health and safety. BFRP improved the prosthetic’s flexural properties and reduced the failure rate significantly.

In sporting goods, often a hybrid carbon-basalt design is used to gain the advantages of each fiber type. The digital magazine is replete with examples, including Wilson (Chicago, Ill., U.S.) badminton rackets, Niche (Holladay, Utah, U.S.) snowboards and Nimbus Paddles (Heriot Bay, B.C., Canada) kayak paddles.

The future seems near

Though a substantial BFRP breakthrough has not yet materialized, progress seems to be occurring on all the necessary fronts: manufacturing efficiency and capacity, global presence, product design and development and regulatory activity. “We think we’re in a fantastic place today,” Thompson declares, “and our customers have been showing us that they believe it too, by their level of investment and their desire to see our U.S. facility come online.”

Anticipating significant developments in the next 12 to 24 months, Thompson concludes, “We’re excited to be an additional composite tool in the toolkit.”

» Author: Karen Mason

» Publication Date: 23/04/2019

» More Information

« Go to Technological Watch